Καλά πλασαρίσματα στα στατιστικά του πρωταθλήματος είναι απόδειξη της ποιότητας του ρόστερ της ομάδας. Τα στατιστικά δείχνουν τους καλύτερους παίκτες σύμφωνα με τα συγκεκριμένα κριτήρια. Οι καλύτεροι παίκτες στο τέλος της αγωνιστικής περιόδου θα κερδίσουν ένα μπόνους στη δημοτικότητα τους και οι ομάδες τους θα κερδίσουν μια χρηματική ανταμαοιβή από τους οργανωτές του πρωταθλήματος.
Περίοδος:
Χώρα:
Πρωτάθλημα:
Παίκτες
Βθμ | Όνομα | Ομάδα | MP | G | A | G+A | S | S% | G7m | S7m | TO | ST | BS | YC | 2min | RC |
1 | ![]() |
![]() |
1 | 21 | 9 | 30 | 24 | 87.5 | 10 | 10 | 1 | 0 | 1 | 1 | 0 | 0 |
2 | ![]() |
![]() |
1 | 18 | 7 | 25 | 20 | 90.0 | 9 | 10 | 0 | 1 | 1 | 0 | 0 | 0 |
3 | ![]() |
![]() |
1 | 14 | 5 | 19 | 19 | 73.7 | 5 | 7 | 2 | 2 | 1 | 0 | 0 | 0 |
4 | ![]() |
![]() |
1 | 13 | 4 | 17 | 13 | 100.0 | 0 | 0 | 2 | 2 | 0 | 0 | 1 | 0 |
5 | ![]() |
![]() |
1 | 11 | 6 | 17 | 14 | 78.6 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
6 | ![]() |
![]() |
1 | 10 | 6 | 16 | 11 | 90.9 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 |
7 | ![]() |
![]() |
1 | 10 | 6 | 16 | 12 | 83.3 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 0 |
8 | ![]() |
![]() |
1 | 9 | 7 | 16 | 14 | 64.3 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
9 | ![]() |
![]() |
1 | 5 | 11 | 16 | 6 | 83.3 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 |
10 | ![]() |
![]() |
1 | 15 | 0 | 15 | 15 | 100.0 | 11 | 11 | 1 | 0 | 2 | 0 | 1 | 0 |
11 | ![]() |
![]() |
1 | 11 | 4 | 15 | 14 | 78.6 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
12 | ![]() |
![]() |
1 | 7 | 6 | 13 | 8 | 87.5 | 0 | 0 | 0 | 1 | 1 | 0 | 2 | 0 |
13 | ![]() |
![]() |
1 | 8 | 4 | 12 | 10 | 80.0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
14 | ![]() |
![]() |
1 | 7 | 5 | 12 | 7 | 100.0 | 0 | 0 | 2 | 0 | 0 | 1 | 1 | 0 |
15 | ![]() |
![]() |
1 | 10 | 1 | 11 | 12 | 83.3 | 4 | 6 | 0 | 0 | 0 | 1 | 0 | 0 |
16 | ![]() |
![]() |
1 | 7 | 4 | 11 | 7 | 100.0 | 0 | 0 | 2 | 0 | 2 | 1 | 1 | 0 |
17 | ![]() |
![]() |
1 | 5 | 6 | 11 | 9 | 55.6 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
18 | ![]() |
![]() |
1 | 9 | 1 | 10 | 17 | 52.9 | 3 | 4 | 1 | 0 | 0 | 0 | 0 | 0 |
19 | ![]() |
![]() |
1 | 7 | 3 | 10 | 10 | 70.0 | 0 | 0 | 0 | 3 | 0 | 1 | 0 | 0 |
20 | ![]() |
![]() |
1 | 8 | 1 | 9 | 15 | 53.3 | 1 | 3 | 2 | 2 | 1 | 0 | 1 | 0 |
21 | ![]() |
![]() |
1 | 7 | 2 | 9 | 9 | 77.8 | 1 | 1 | 2 | 1 | 3 | 1 | 1 | 0 |
22 | ![]() |
![]() |
1 | 6 | 3 | 9 | 6 | 100.0 | 0 | 0 | 3 | 2 | 0 | 1 | 2 | 0 |
23 | ![]() |
![]() |
1 | 5 | 4 | 9 | 16 | 31.3 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 |
24 | ![]() |
![]() |
1 | 4 | 5 | 9 | 5 | 80.0 | 0 | 0 | 1 | 0 | 1 | 0 | 2 | 0 |
25 | ![]() |
![]() |
1 | 7 | 1 | 8 | 13 | 53.8 | 0 | 0 | 1 | 4 | 1 | 1 | 1 | 0 |
26 | ![]() |
![]() |
1 | 5 | 3 | 8 | 6 | 83.3 | 4 | 5 | 0 | 0 | 0 | 1 | 0 | 0 |
27 | ![]() |
![]() |
1 | 3 | 5 | 8 | 4 | 75.0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 |
28 | ![]() |
![]() |
1 | 3 | 5 | 8 | 9 | 33.3 | 0 | 0 | 6 | 2 | 2 | 0 | 0 | 0 |
29 | ![]() |
![]() |
1 | 0 | 8 | 8 | 7 | 0.0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
30 | ![]() |
![]() |
1 | 5 | 2 | 7 | 8 | 62.5 | 0 | 0 | 1 | 2 | 0 | 1 | 3 | 1 |
31 | ![]() |
![]() |
1 | 5 | 2 | 7 | 8 | 62.5 | 0 | 0 | 2 | 1 | 1 | 0 | 0 | 0 |
32 | ![]() |
![]() |
1 | 5 | 2 | 7 | 11 | 45.5 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
33 | ![]() |
![]() |
1 | 5 | 1 | 6 | 8 | 62.5 | 0 | 0 | 3 | 0 | 1 | 0 | 0 | 0 |
34 | ![]() |
![]() |
1 | 4 | 2 | 6 | 5 | 80.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
35 | ![]() |
![]() |
1 | 4 | 2 | 6 | 12 | 33.3 | 1 | 3 | 2 | 1 | 1 | 0 | 1 | 0 |
36 | ![]() |
![]() |
1 | 3 | 3 | 6 | 4 | 75.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
37 | ![]() |
![]() |
1 | 5 | 0 | 5 | 5 | 100.0 | 0 | 0 | 1 | 0 | 1 | 1 | 3 | 1 |
38 | ![]() |
![]() |
1 | 5 | 0 | 5 | 5 | 100.0 | 0 | 0 | 0 | 4 | 0 | 1 | 1 | 0 |
39 | ![]() |
![]() |
1 | 5 | 0 | 5 | 5 | 100.0 | 0 | 0 | 2 | 2 | 0 | 0 | 1 | 0 |
40 | ![]() |
![]() |
1 | 5 | 0 | 5 | 7 | 71.4 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 |
41 | ![]() |
![]() |
1 | 5 | 0 | 5 | 18 | 27.8 | 0 | 3 | 2 | 1 | 0 | 1 | 0 | 0 |
42 | ![]() |
![]() |
1 | 4 | 1 | 5 | 4 | 100.0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
43 | ![]() |
![]() |
1 | 4 | 1 | 5 | 4 | 100.0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
44 | ![]() |
![]() |
1 | 4 | 1 | 5 | 6 | 66.7 | 2 | 3 | 0 | 1 | 1 | 1 | 2 | 0 |
45 | ![]() |
![]() |
1 | 4 | 1 | 5 | 19 | 21.1 | 4 | 8 | 1 | 0 | 0 | 0 | 1 | 0 |
46 | ![]() |
![]() |
1 | 2 | 3 | 5 | 2 | 100.0 | 0 | 0 | 1 | 1 | 0 | 0 | 2 | 0 |
47 | ![]() |
![]() |
1 | 2 | 3 | 5 | 7 | 28.6 | 0 | 0 | 3 | 2 | 1 | 1 | 0 | 0 |
48 | ![]() |
![]() |
1 | 4 | 0 | 4 | 4 | 100.0 | 0 | 0 | 3 | 2 | 1 | 1 | 0 | 0 |
49 | ![]() |
![]() |
1 | 4 | 0 | 4 | 4 | 100.0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
50 | ![]() |
![]() |
1 | 2 | 2 | 4 | 9 | 22.2 | 0 | 0 | 2 | 0 | 0 | 1 | 2 | 0 |
Τερματοφύλακες
Βθμ | Όνομα | Ομάδα | MP | SV | SA | GA | Sv% | 7mSv | 7mSA | 7mGA | 7m% |
1 | ![]() |
![]() |
1 | 13 | 18 | 5 | 72.2 | 3 | 5 | 2 | 60 |
2 | ![]() |
![]() |
1 | 23 | 32 | 9 | 71.9 | 4 | 5 | 1 | 80 |
3 | ![]() |
![]() |
1 | 20 | 28 | 8 | 71.4 | 4 | 5 | 1 | 80 |
4 | ![]() |
![]() |
1 | 5 | 7 | 2 | 71.4 | 1 | 2 | 1 | 50 |
5 | ![]() |
![]() |
1 | 11 | 18 | 7 | 61.1 | 0 | 2 | 2 | 0 |
6 | ![]() |
![]() |
1 | 13 | 29 | 16 | 44.8 | 2 | 3 | 1 | 67 |
7 | ![]() |
![]() |
1 | 19 | 45 | 26 | 42.2 | 0 | 2 | 2 | 0 |
8 | ![]() |
![]() |
1 | 8 | 19 | 11 | 42.1 | 0 | 3 | 3 | 0 |
9 | ![]() |
![]() |
1 | 5 | 12 | 7 | 41.7 | 1 | 1 | 0 | 100 |
10 | ![]() |
![]() |
1 | 14 | 34 | 20 | 41.2 | 2 | 3 | 1 | 67 |
11 | ![]() |
![]() |
1 | 2 | 6 | 4 | 33.3 | 0 | 2 | 2 | 0 |
12 | ![]() |
![]() |
1 | 6 | 23 | 17 | 26.1 | 2 | 2 | 0 | 100 |
13 | ![]() |
![]() |
1 | 6 | 55 | 49 | 10.9 | 1 | 5 | 4 | 20 |
14 | ![]() |
![]() |
1 | 4 | 50 | 46 | 8.0 | 1 | 6 | 5 | 17 |
15 | ![]() |
![]() |
1 | 4 | 52 | 48 | 7.7 | 0 | 9 | 9 | 0 |
16 | ![]() |
![]() |
1 | 2 | 46 | 44 | 4.3 | 0 | 10 | 10 | 0 |
17 | ![]() |
![]() |
1 | 1 | 26 | 25 | 3.8 | 0 | 4 | 4 | 0 |
18 | ![]() |
![]() |
1 | 2 | 52 | 50 | 3.8 | 0 | 12 | 12 | 0 |