Καλά πλασαρίσματα στα στατιστικά του πρωταθλήματος είναι απόδειξη της ποιότητας του ρόστερ της ομάδας. Τα στατιστικά δείχνουν τους καλύτερους παίκτες σύμφωνα με τα συγκεκριμένα κριτήρια. Οι καλύτεροι παίκτες στο τέλος της αγωνιστικής περιόδου θα κερδίσουν ένα μπόνους στη δημοτικότητα τους και οι ομάδες τους θα κερδίσουν μια χρηματική ανταμαοιβή από τους οργανωτές του πρωταθλήματος.
Περίοδος:
Χώρα:
Πρωτάθλημα:
Παίκτες
Βθμ | Όνομα | Ομάδα | MP | G | A | G+A | S | S% | G7m | S7m | TO | ST | BS | YC | 2min | RC |
1 | ![]() |
![]() |
2 | 18 | 8 | 26 | 26 | 69.2 | 0 | 0 | 5 | 3 | 0 | 1 | 0 | 0 |
2 | ![]() |
![]() |
2 | 17 | 7 | 24 | 29 | 58.6 | 0 | 0 | 5 | 1 | 2 | 2 | 1 | 0 |
3 | ![]() |
![]() |
2 | 18 | 3 | 21 | 28 | 64.3 | 0 | 0 | 6 | 4 | 0 | 1 | 2 | 0 |
4 | ![]() |
![]() |
2 | 18 | 3 | 21 | 29 | 62.1 | 0 | 0 | 3 | 2 | 1 | 0 | 2 | 0 |
5 | ![]() |
![]() |
2 | 10 | 11 | 21 | 15 | 66.7 | 0 | 0 | 2 | 0 | 1 | 1 | 3 | 0 |
6 | ![]() |
![]() |
2 | 15 | 5 | 20 | 27 | 55.6 | 0 | 0 | 3 | 1 | 0 | 1 | 1 | 0 |
7 | ![]() |
![]() |
2 | 12 | 8 | 20 | 23 | 52.2 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
8 | ![]() |
![]() |
2 | 12 | 8 | 20 | 23 | 52.2 | 0 | 0 | 5 | 2 | 2 | 0 | 0 | 0 |
9 | ![]() |
![]() |
2 | 14 | 5 | 19 | 27 | 51.9 | 0 | 0 | 3 | 3 | 2 | 1 | 1 | 0 |
10 | ![]() |
![]() |
2 | 15 | 3 | 18 | 25 | 60.0 | 0 | 0 | 4 | 1 | 1 | 1 | 1 | 0 |
11 | ![]() |
![]() |
2 | 12 | 6 | 18 | 14 | 85.7 | 7 | 8 | 1 | 1 | 2 | 0 | 2 | 0 |
12 | ![]() |
![]() |
2 | 11 | 7 | 18 | 17 | 64.7 | 0 | 0 | 3 | 3 | 2 | 1 | 2 | 0 |
13 | ![]() |
![]() |
2 | 11 | 7 | 18 | 22 | 50.0 | 0 | 0 | 3 | 5 | 2 | 0 | 1 | 0 |
14 | ![]() |
![]() |
2 | 12 | 5 | 17 | 22 | 54.5 | 0 | 0 | 4 | 2 | 0 | 1 | 0 | 0 |
15 | ![]() |
![]() |
2 | 11 | 6 | 17 | 20 | 55.0 | 0 | 0 | 4 | 2 | 0 | 2 | 1 | 0 |
16 | ![]() |
![]() |
2 | 15 | 1 | 16 | 18 | 83.3 | 9 | 10 | 9 | 2 | 0 | 1 | 3 | 0 |
17 | ![]() |
![]() |
2 | 14 | 2 | 16 | 18 | 77.8 | 7 | 8 | 3 | 0 | 1 | 0 | 2 | 0 |
18 | ![]() |
![]() |
2 | 13 | 3 | 16 | 19 | 68.4 | 7 | 10 | 3 | 1 | 1 | 0 | 1 | 0 |
19 | ![]() |
![]() |
2 | 12 | 4 | 16 | 24 | 50.0 | 0 | 0 | 4 | 1 | 0 | 1 | 0 | 0 |
20 | ![]() |
![]() |
2 | 11 | 5 | 16 | 25 | 44.0 | 0 | 0 | 3 | 0 | 1 | 1 | 0 | 0 |
21 | ![]() |
![]() |
2 | 10 | 6 | 16 | 13 | 76.9 | 4 | 4 | 3 | 2 | 1 | 2 | 0 | 0 |
22 | ![]() |
![]() |
2 | 9 | 7 | 16 | 17 | 52.9 | 0 | 0 | 4 | 0 | 0 | 1 | 2 | 0 |
23 | ![]() |
![]() |
2 | 8 | 8 | 16 | 17 | 47.1 | 0 | 0 | 4 | 2 | 1 | 1 | 2 | 0 |
24 | ![]() |
![]() |
2 | 15 | 0 | 15 | 20 | 75.0 | 5 | 7 | 3 | 1 | 1 | 0 | 2 | 0 |
25 | ![]() |
![]() |
2 | 13 | 2 | 15 | 21 | 61.9 | 0 | 0 | 7 | 1 | 2 | 2 | 1 | 0 |
26 | ![]() |
![]() |
2 | 12 | 3 | 15 | 16 | 75.0 | 0 | 0 | 4 | 3 | 5 | 2 | 1 | 0 |
27 | ![]() |
![]() |
2 | 12 | 3 | 15 | 23 | 52.2 | 0 | 0 | 2 | 2 | 0 | 1 | 0 | 0 |
28 | ![]() |
![]() |
2 | 11 | 4 | 15 | 19 | 57.9 | 0 | 0 | 2 | 2 | 0 | 1 | 1 | 0 |
29 | ![]() |
![]() |
2 | 9 | 6 | 15 | 17 | 52.9 | 0 | 0 | 4 | 2 | 0 | 2 | 1 | 0 |
30 | ![]() |
![]() |
2 | 9 | 6 | 15 | 21 | 42.9 | 0 | 0 | 2 | 4 | 0 | 1 | 0 | 0 |
31 | ![]() |
![]() |
2 | 9 | 6 | 15 | 21 | 42.9 | 0 | 0 | 2 | 3 | 2 | 0 | 0 | 0 |
32 | ![]() |
![]() |
2 | 8 | 7 | 15 | 24 | 33.3 | 0 | 0 | 4 | 1 | 0 | 1 | 0 | 0 |
33 | ![]() |
![]() |
2 | 11 | 3 | 14 | 11 | 100.0 | 1 | 1 | 1 | 3 | 4 | 0 | 0 | 0 |
34 | ![]() |
![]() |
2 | 11 | 3 | 14 | 19 | 57.9 | 3 | 7 | 4 | 2 | 2 | 1 | 1 | 0 |
35 | ![]() |
![]() |
2 | 9 | 5 | 14 | 16 | 56.3 | 0 | 0 | 1 | 1 | 2 | 1 | 5 | 1 |
36 | ![]() |
![]() |
2 | 9 | 5 | 14 | 19 | 47.4 | 0 | 0 | 4 | 2 | 2 | 1 | 1 | 0 |
37 | ![]() |
![]() |
2 | 9 | 5 | 14 | 21 | 42.9 | 0 | 0 | 2 | 2 | 1 | 1 | 2 | 0 |
38 | ![]() |
![]() |
2 | 7 | 7 | 14 | 12 | 58.3 | 0 | 0 | 8 | 0 | 1 | 1 | 2 | 0 |
39 | ![]() |
![]() |
2 | 7 | 7 | 14 | 21 | 33.3 | 0 | 0 | 3 | 2 | 1 | 1 | 3 | 0 |
40 | ![]() |
![]() |
2 | 12 | 1 | 13 | 17 | 70.6 | 6 | 8 | 4 | 4 | 0 | 0 | 0 | 0 |
41 | ![]() |
![]() |
2 | 10 | 3 | 13 | 13 | 76.9 | 0 | 0 | 6 | 1 | 3 | 0 | 1 | 0 |
42 | ![]() |
![]() |
2 | 8 | 5 | 13 | 10 | 80.0 | 0 | 0 | 4 | 2 | 6 | 0 | 3 | 0 |
43 | ![]() |
![]() |
2 | 8 | 5 | 13 | 19 | 42.1 | 0 | 0 | 2 | 2 | 1 | 1 | 2 | 0 |
44 | ![]() |
![]() |
2 | 6 | 7 | 13 | 13 | 46.2 | 0 | 0 | 5 | 2 | 3 | 2 | 2 | 0 |
45 | ![]() |
![]() |
2 | 6 | 7 | 13 | 16 | 37.5 | 0 | 0 | 2 | 2 | 2 | 2 | 3 | 0 |
46 | ![]() |
![]() |
2 | 12 | 0 | 12 | 13 | 92.3 | 0 | 0 | 4 | 2 | 5 | 1 | 0 | 0 |
47 | ![]() |
![]() |
2 | 12 | 0 | 12 | 14 | 85.7 | 5 | 6 | 7 | 1 | 2 | 1 | 0 | 0 |
48 | ![]() |
![]() |
2 | 12 | 0 | 12 | 23 | 52.2 | 0 | 0 | 5 | 2 | 0 | 2 | 2 | 0 |
49 | ![]() |
![]() |
2 | 9 | 3 | 12 | 9 | 100.0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
50 | ![]() |
![]() |
2 | 9 | 3 | 12 | 19 | 47.4 | 0 | 0 | 4 | 3 | 0 | 1 | 0 | 0 |
Τερματοφύλακες
Βθμ | Όνομα | Ομάδα | MP | SV | SA | GA | Sv% | 7mSv | 7mSA | 7mGA | 7m% |
1 | ![]() |
![]() |
2 | 29 | 75 | 46 | 38.7 | 2 | 6 | 4 | 33 |
2 | ![]() |
![]() |
2 | 26 | 75 | 49 | 34.7 | 5 | 7 | 2 | 71 |
3 | ![]() |
![]() |
2 | 26 | 75 | 49 | 34.7 | 1 | 6 | 5 | 17 |
4 | ![]() |
![]() |
2 | 24 | 72 | 48 | 33.3 | 1 | 7 | 6 | 14 |
5 | ![]() |
![]() |
2 | 20 | 61 | 41 | 32.8 | 0 | 3 | 3 | 0 |
6 | ![]() |
![]() |
2 | 21 | 68 | 47 | 30.9 | 1 | 4 | 3 | 25 |
7 | ![]() |
![]() |
2 | 24 | 80 | 56 | 30.0 | 0 | 7 | 7 | 0 |
8 | ![]() |
![]() |
2 | 23 | 79 | 56 | 29.1 | 2 | 7 | 5 | 29 |
9 | ![]() |
![]() |
2 | 21 | 76 | 55 | 27.6 | 3 | 9 | 6 | 33 |
10 | ![]() |
![]() |
2 | 23 | 91 | 68 | 25.3 | 0 | 6 | 6 | 0 |
11 | ![]() |
![]() |
2 | 18 | 76 | 58 | 23.7 | 2 | 10 | 8 | 20 |
12 | ![]() |
![]() |
2 | 17 | 81 | 64 | 21.0 | 2 | 8 | 6 | 25 |
13 | ![]() |
![]() |
2 | 16 | 77 | 61 | 20.8 | 1 | 5 | 4 | 20 |
14 | ![]() |
![]() |
2 | 17 | 82 | 65 | 20.7 | 0 | 12 | 12 | 0 |